RoboBoat 2022

Design Presentation - Team VYUHA June 23, 2022

Thiruvarulselvan K

Saravanan E

Srisanthosh S

Puviyarasu S

Tharakeshvar P

Krishnan M

Meet our team

Presentation Outline

Competition requirement

- → Problem statement
- → Team Strategy

Design and Results

- → Hull design
- → Control system
- → Computer Vision
- → Failsafe system

Planning

- → Timeline
- → Cost estimation
- → Team roster

Problem Statement

Project Background

Develop an Autonomous Surface Vehicle (ASV) with multiple capabilities

- → Efficient Hull form
- → Navigate towards a destination autonomously
- → Obstacle avoidance capability
- → Maintain spatial orientation while turning
- → Immune from drifting due to water current
- → Object detection and automated path planning

Team Strategy - First time participating in RoboBoat

1 To be competitive

2 Rapid prototyping

3 Make efficient hull form with better maneuverability

3 High priority to tasks that need similar vehicle behaviours

Hull Design

Provides smooth ride

Waterplane area: 0.63 times that of the monohull.

Better stability

Resistance to waves

SWASH

Boat dimensions :

Dimension	Unit (mm)
Length	1010
Height	450
Width	700

Submerged Hull dimensions:

Dimension	Unit (mm)
Length	1010
Max diameter	140
Min diameter	16.82

3D MODELLING

Hydrodynamic analysis

- ✤ Edges reduced the drag.
- ✤ Better maneuverability.
- \clubsuit Smooth motion.

- **♦** Better results with motion of boat.
- ✤ Expected minimal drag.
- ♦ Expected speed.

Molding Process

Parameters (as per rule book)

ASV design parameters

Buoyancy	Positive buoyant
Dimension (L X B X H)	6 X 3 X 3
Total weight	63 Kg(140lbs)
Payload	7 Kg (15lbs)

Buoyancy	Positive buoyant
Dimension (L X B X H)	3.31 X 2.29 X 1.47
Total weight	11.6 Kg (25.5lbs)
Payload	8 Kg (17.6lbs)

Task based design specifications

Task based design specifications

PROPULSION SYSTEM

SRISANTHOSH SEKAR

MANIKANDAN GANESAN

KEERTHIVASAN CHANDRADASS

Propulsion System

Propulsion system- flow diagram

Propulsion system plays a major role in stability and manoeuvrability

Constrains

- Center of gravity
- Buoyancy

Idea

- Electric propulsion
- Outboard drive
- Differential control

ASV Power Requirements

ESC

Differential control

Calculated Power - 195.65W

- Continuous power 390 Watts Operating voltage- 7 to 20 V Current - 24 A
- Thrust Force 52.5N 67N
- Current 0 30A Operating Voltage – 7-26V Transient Response – 400Hz
- Skid steering2 thrusters single signal2 channels- linear and turning

Propulsion Highlights

Speed

Direction

Stability - Linear motion

Maximum Speed - 1.38 m/s

Controlled Behaviour

Stability - Turning

Turning Radius - 2.12 m

Controlled Velocity Compensation

IMU DATA - From Pixhawk controller

TTIME (S)

Velocity behaviour

AUTONOMOUS BEHAVIOUR FOR ONE DRIVE CYCLE

Turning radius and speed characteristics

Overall results

PWM VS I

12

LINEAR SPEED

TEMPERATURE BEHAVIOUR

LINEAR SPEED

CONTROL SYSTEM

Control System Model

Pixhawk 2.4.8 Controller

The pixhawk control system is

- Reliable
- Robust
- Inbuilt IMU
- Supports multiple sensors
- Computer interface support
- Radio communication enabled

Competition Strategy

NAVIGATION

- Navigate between the gates without colliding
- Adding waypoints for boat navigation
- The L1 Controller assists the boat in maintaining its course.

SNACK RUN

- Enter and escape through the same gate buoy as soon as possible
- IMU gives the exact data to PID controller
- PID keeps the boat stable in water

Electrical Architecture

Control System Architecture

Navigation:

Navigation:

Navigation task testing video on mission planner software

PID Tuning

Bring stability by PID tuning

Attitude Control

Multi-objective particle swarm optimization (MOPSO) algorithm is used in pixhawk for position and attitude control systems.

Desired timing will be achieved by PID tuning

Attitude control provides the necessary speed control while turning

PID Tuning - Attempts

Snack Run

DATA	PLAN SETUP CONFIG SI			1									ARI	DUPILO	TCP Stats	π	11520 CP5760-1-SU	0 -	DISCONNECT
Distance Prev: 52. Home: 63	: 0.1207 km 84 m AZ: 94 3.70 m														MIS	SION	Zoom	GEC SRTM	11.4415874 77.0649223 267.00m
																	:	Google Google Status	<u>View KML</u> SateliteMaj ▼ loaded tiles
Ø						Track	er Home - 2	267		2							:	L S	Load File Save File
ann						Ö 🥜	100			T.C.	1								Read Vinite
						de la	-			X	1						•	V Hom	Vinte Fast
						8	~	-	-0:-								•	Lat Long ASL	11.4418445 77.0643389 267.1400146
	opin - Map dara \$2002 Tele Atmin Imag		arral detres											-			i.		
WP Rad	lius Loiter Radius Default Alt 100	Relativ	/e • 🗖	Verify Height	Add Below	Alt Warn 0	2.5										_		
	Command	Delay			Lat	Long Alt	Frame	Delete		Grad Ang	ple Dist A	z							
4	WAYPOINT	~ 0	0 0	0	11.4417832	77.0647413 100	Relative ~	X	0.0	0.0 0.0	13.2 14	9							
Þ 5	WAYPOINT		0 0	0	11 4416965	77.0647037 100	Relative ·	X	5	0.0 0.0	10.5 20	3							
- 6	WAYPOINT	× 0	0 0	0	11.4416347	77.0645750 100	Relative ~	÷.		0.0 0.0	15.2 24	6							
<u>ــــــــــــــــــــــــــــــــــــ</u>					111111111111	100	1010170			0.0	10 2 20								

Snack run challenge testing video on mission planner software

COMPUTER VISION

Basic Characteristics of our Boat:

Computer Vision system Overview:

Computing interfacing:

NVIDIA JETSON TX2	RPLIDAR S2	ZED 2i
	Im Im Im	· ZED
 Specifications: 256-core NVIDIA Pascal Dual core NVIDIA 2 CPU Quad Core ARM-A57MP core 8GB 128-bit LPDDR4 Memory 32GB eMMC5.1 	 Specifications: 32000 Samples per Second 30m Detection Range IP65 water proofed Outdoor LIDAR 	 Specifications: 2k - 50fps video output Depth fps upto 100Hz Depth FOV- 110° X 70° X 120° max Detection range upto 20m

Perception

Gate Detection :

Obstacle Avoidance

Shape Detection and Navigation

FAILSAFE SYSTEM

Fail Safe

Primary Function

The system is to cut the power to motors with an onboard or a remote button in the event of emergency

Our Fail-Safe system includes a onboard kill switch and a off board (remote) kill switch

Safe Failure Modes

- Manual Triggering
- Remote Triggering

Shutdown Time	< 0.05 secs		
Power Consumption	< 20mA		
Operating Voltage	5 V		
Radio Freq (Remote)	2.4 GHz		
Load Voltage	24 V		
Load Current	30 A		

Block diagram of FailSafe Unit

FailSafe Circuit and Algorithm

Timeline

Project Planning

Task	Progress	Estimated Completion
Design, Analysis and Simulation of the subsytems	100%	Week 1 - 5
Hull Fabrication	100%	Week 6
Thruster mounting	100%	Week 7
Electronics assembly	100%	Weeks 6 - 7
Failsafe system assembly	100%	Week 8
Control system configuration & Tuning	100%	Weeks 8 - 9
Cable management	100%	Week 7 - 8
Sensor mounting	100%	Week 9
OBC & Controller interface	100%	Week 9
Final testing of the systems and Validation	80%	Weeks 10 - 12

Status Indicators

Colour	Mode
Yellow	Manual Operation
Green	Autonomous Operation
Red	FailSafe Enabled

- 1. Status Indicators are incorporated with the FailSafe System
- 2. The purpose of them is to indicate the current status of the ASV

Budget

Project Planning

Category	Amount			
Hull form	835 USD			
Power system	173 USD			
Propulsion	236 USD			
Failsafe system	125 USD			
Computing	768 USD			
Sensors	1300 USD			
Enclosure and accessories	67 USD			

References

- 1. Y. Moon, Y. Choi, S. Hong and I. Lee, "Sensor Data Management System in Sensor Network for Low Power," 2008 10th International Conference on Advanced Communication Technology, 2008, pp. 504-507, doi: 10.1109/ICACT.2008.4493812.
- 2. W. H. Warden, "A control system model for autonomous sailboat navigation," IEEE Proceedings of the SOUTHEASTCON '91, 1991, pp. 944-947 vol.2, doi: 10.1109/SECON.1991.147900.
- L. Feng and Q. Fangchao, "Research on the Hardware Structure Characteristics and EKF Filtering Algorithm of the Autopilot PIXHAWK," 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), 2016, pp. 228-231, doi: 10.1109/IMCCC.2016.128.
- 4. J. Barton et al., "An inertial measurement unit (IMU) for an autonomous wireless sensor network," Proceedings of 6th Electronics Packaging Technology Conference (EPTC 2004) (IEEE Cat. No.04EX971), 2004, pp. 586-589, doi: 10.1109/EPTC.2004.1396675.
- 5. S. Baldi, D. Sun, X. Xia, G. Zhou and D. Liu, "ArduPilot-based adaptive autopilot: architecture and software-in-the-loop experiments," in IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2022.3162179.
- 6. Park, M. -., & Kang, J. -. (2021). Structural analysis on frame-cover of USV robot. Paper presented at the International Conference on Control, Automation and Systems, , 2021-October 1649-1652. doi:10.23919/ICCAS52745.2021.9649739 Retrieved
- 7. Arfianto, A. Z., Rahmat, M. B., Dhiyavia, F., Santoso, T. B., Gunantara, N., Supriyanto, E., & Ardhana, V. Y. P. (2020). Autopilot unmanned smart boat vehicle (ausv) communication with lora rfm95. International Journal on Informatics Visualization, 4(4),

Thanks to

